Как выглядит ген – Ген — это… Что такое Ген?

Ген — это… Что такое Ген?

Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма.

Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

История термина

Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Иогансеном три года спустя после введения Уильямом Бэтсоном термина «генетика». За сорок лет до появления понятия «ген» Чарльз Дарвин в 1868 году предложил «временную гипотезу» пангенеза, согласно которой все клетки организма отделяют от себя особые частицы или геммулы, а из них, в свою очередь, образуются половые клетки. Затем Гуго де Фриз в 1889 году, спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин «панген» для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида. Ещё через 20 лет В. Иогансен счёл удобным пользоваться только второй частью термина Гуго де Фриза «ген» и заменить им неопределенное понятие «зачатка», «детерминанта», «наследственного фактора». При этом В. Иогансен подчеркивал, что «этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями». В. Иогансен сразу же образовал ключевое производное понятие «генотип» для обозначения наследственной конституции гамет и зигот в противоположность фенотипу

[1].

Основные характеристики гена

Грегор Мендель

Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передаче по наследству признаков при скрещивании гороха. Сформулированные им закономерности впоследствии назвали Законами Менделя.

Среди учёных нет единого мнения под каким углом рассматривать ген. Одни учёные его рассматривают как информационную наследственную единицу, а единицей естественного отбора является вид, группа, популяция или отдельный индивид. Другие учёные, как например Ричард Докинз в своей книге «Эгоистичный ген», рассматривают ген как единицу естественного отбора, а сам организм — как машину для выживания генов.

В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК (англ.)русск., таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. 

copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека[2]. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу, по имени которой и получила название сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Гены и мимы

По аналогии с генами Ричардом Докинзом был введён в употребление термин «мим» — единица культурной информации. Если ген распространяется в химической среде, используя для размножения химические вещества, то мим распространяется в информационной среде: на носителях информации, в человеческой памяти, а также в сети. Также как гены конкурируют между собой за ресурсы: химические вещества, так и мимы конкурируют за информационное пространство. По целому ряду причин, между пространственным распределением генов и мимов могут наблюдаться достаточно жёсткие корреляции.

Свойства гена

  1. дискретность — несмешиваемость генов;
  2. стабильность — способность сохранять структуру;
  3. лабильность — способность многократно мутировать;
  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность — в генотипе диплоидных организмов только две формы гена;
  6. специфичность — каждый ген кодирует свой признак;
  7. плейотропия — множественный эффект гена;
  8. экспрессивность — степень выраженности гена в признаке;
  9. пенетрантность — частота проявления гена в фенотипе;
  10. амплификация — увеличение количества копий гена.

Классификация

  1. Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).
  2. Функциональные гены.

См. также

Примечания

  1. Голубовский М.Д. Век генетики: эволюция идей и понятий. Научно-исторические очерки. — СПб.: Борей Арт, 2000. — 262 с. — ISBN 5-7187-0304-3
  2. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, Macdonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007). «The Diploid Genome Sequence of an Individual Human». PLoS Biol 5 (10): e254. PMID 17803354.

Ссылки

dic.academic.ru

Ген — Википедия

Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

История термина

Грегор Мендель

Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Иогансеном три года спустя после введения Уильямом Бэтсоном термина «генетика». За 40 лет до появления понятия «ген» Чарльз Дарвин в 1868 году предложил «временную гипотезу» пангенеза, согласно которой все клетки организма отделяют от себя особые частицы, или геммулы, а из них, в свою очередь, образуются половые клетки. Затем Гуго де Фриз в 1889 году, спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин «панген» для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида. Ещё через 20 лет В. Иогансен счёл удобным пользоваться только второй частью термина Гуго де Фриза «ген» и заменить им неопределенное понятие «зачатка», «детерминанта», «наследственного фактора». При этом В. Иогансен подчеркивал, что «этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями». В. Иогансен сразу же образовал ключевое производное понятие «генотип» для обозначения наследственной конституции гамет и зигот в противоположность фенотипу

[1]. Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передаче по наследству признаков при скрещивании гороха. Сформулированные им закономерности впоследствии назвали законами Менделя.

Среди учёных нет единого мнения, под каким углом рассматривать ген. В основном учёные рассматривают ген как информационную наследственную единицу, а единицей естественного отбора является вид, группа, популяция или отдельный индивид. Ричард Докинз в своей книге «Эгоистичный ген», рассматривает ген как единицу естественного отбора, а сам организм — как машину для выживания генов.

Основные характеристики гена

В настоящее время в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

Изображение 46 (23 пар) хромосом женского кариотипа человека, полученное с помощью FISH. [2]. Хромосома содержит единственную, очень длинную двойную цепь ДНК, которая кодирует множество генов. Место расположения конкретного гена в хромосоме называется локус.

В то же время каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК (англ.)русск., таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как

trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин «ген» появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека[3]. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин (А), тимин (Т), цитозин (Ц), гуанин (Г), пятиатомный сахар (пентозу) — дезоксирибозу, по имени которой и получила название сама ДНК, — а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Данный раздел имеет чрезмерный объём или содержит маловажные подробности.

Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения.

По аналогии с генами, Ричардом Докинзом в 1976 году в книге «Эгоистичный ген» был введён в употребление термин «мем» — единица культурной информации. Если ген распространяется в химической среде, используя для размножения химические вещества, то мем распространяется в информационной среде: на носителях информации, в человеческой памяти, а также в сети. Также как гены конкурируют между собой за ресурсы: химические вещества, так и мемы конкурируют за информационное пространство. По целому ряду причин, между пространственным распределением генов и мемов могут наблюдаться достаточно жёсткие корреляции[4].

Свойства гена

  1. дискретность — несмешиваемость генов;
  2. стабильность — способность сохранять структуру;
  3. лабильность — способность многократно мутировать;
  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность — в генотипе диплоидных организмов только две формы гена;
  6. специфичность — каждый ген кодирует свой признак;
  7. плейотропия — множественный эффект гена;
  8. экспрессивность — степень выраженности гена в признаке;
  9. пенетрантность — частота проявления гена в фенотипе;
  10. амплификация — увеличение количества копий гена[источник не указан 1498 дней].

Классификация

  1. Структурные гены — гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном (См. также статью гены домашнего хозяйства).
  2. Функциональные гены — гены, которые контролируют и направляют деятельность структурных генов[5].

См. также

Примечания

  1. Голубовский М.Д. Век генетики: эволюция идей и понятий. Научно-исторические очерки. — СПб.: Борей Арт, 2000. — 262 с. — ISBN 5-7187-0304-3.
  2. (2005) «Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes». PLoS Biology 3 (5): e157. DOI:10.1371/journal.pbio.0030157. PMID 15839726.
  3. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, Macdonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007). «The Diploid Genome Sequence of an Individual Human». PLoS Biol 5 (10): e254. PMID 17803354.
  4. Носырев И. Н. Мастера иллюзий. Как идеи превращают нас в рабов. — М.: Форум; Неолит, 2013. — 544 с. — 1000 экз. — ISBN 978-5-91134-678-2.
  5. О.-Я.Л.Бекиш. Медицинская биология. — Минск: Ураджай, 2000. — С. 114. — 518 с.

Ссылки

wikipedia.green

Ген — Википедия

Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

История термина

Грегор Мендель

Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Иогансеном три года спустя после введения Уильямом Бэтсоном термина «генетика». За 40 лет до появления понятия «ген» Чарльз Дарвин в 1868 году предложил «временную гипотезу» пангенеза, согласно которой все клетки организма отделяют от себя особые частицы, или геммулы, а из них, в свою очередь, образуются половые клетки. Затем Гуго де Фриз в 1889 году, спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин «панген» для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида. Ещё через 20 лет В. Иогансен счёл удобным пользоваться только второй частью термина Гуго де Фриза «ген» и заменить им неопределенное понятие «зачатка», «детерминанта», «наследственного фактора». При этом В. Иогансен подчеркивал, что «этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями». В. Иогансен сразу же образовал ключевое производное понятие «генотип» для обозначения наследственной конституции гамет и зигот в противоположность фенотипу[1]. Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передаче по наследству признаков при скрещивании гороха. Сформулированные им закономерности впоследствии назвали законами Менделя.

Среди учёных нет единого мнения, под каким углом рассматривать ген. В основном учёные рассматривают ген как информационную наследственную единицу, а единицей естественного отбора является вид, группа, популяция или отдельный индивид. Ричард Докинз в своей книге «Эгоистичный ген», рассматривает ген как единицу естественного отбора, а сам организм — как машину для выживания генов.

Видео по теме

Основные характеристики гена

В настоящее время в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

Изображение 46 (23 пар) хромосом женского кариотипа человека, полученное с помощью FISH. [2]. Хромосома содержит единственную, очень длинную двойную цепь ДНК, которая кодирует множество генов. Место расположения конкретного гена в хромосоме называется локус.

В то же время каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК (англ.)русск., таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин «ген» появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека[3]. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин (А), тимин (Т), цитозин (Ц), гуанин (Г), пятиатомный сахар (пентозу) — дезоксирибозу, по имени которой и получила название сама ДНК, — а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Данный раздел имеет чрезмерный объём или содержит маловажные подробности.

Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения.

По аналогии с генами, Ричардом Докинзом в 1976 году в книге «Эгоистичный ген» был введён в употребление термин «мем» — единица культурной информации. Если ген распространяется в химической среде, используя для размножения химические вещества, то мем распространяется в информационной среде: на носителях информации, в человеческой памяти, а также в сети. Также как гены конкурируют между собой за ресурсы: химические вещества, так и мемы конкурируют за информационное пространство. По целому ряду причин, между пространственным распределением генов и мемов могут наблюдаться достаточно жёсткие корреляции[4].

Свойства гена

  1. дискретность — несмешиваемость генов;
  2. стабильность — способность сохранять структуру;
  3. лабильность — способность многократно мутировать;
  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность — в генотипе диплоидных организмов только две формы гена;
  6. специфичность — каждый ген кодирует свой признак;
  7. плейотропия — множественный эффект гена;
  8. экспрессивность — степень выраженности гена в признаке;
  9. пенетрантность — частота проявления гена в фенотипе;
  10. амплификация — увеличение количества копий гена[источник не указан 1498 дней].

Классификация

  1. Структурные гены — гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном (См. также статью гены домашнего хозяйства).
  2. Функциональные гены — гены, которые контролируют и направляют деятельность структурных генов[5].

См. также

Примечания

  1. Голубовский М.Д. Век генетики: эволюция идей и понятий. Научно-исторические очерки. — СПб.: Борей Арт, 2000. — 262 с. — ISBN 5-7187-0304-3.
  2. (2005) «Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes». PLoS Biology 3 (5): e157. DOI:10.1371/journal.pbio.0030157. PMID 15839726.
  3. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, Macdonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007). «The Diploid Genome Sequence of an Individual Human». PLoS Biol 5 (10): e254. PMID 17803354.
  4. Носырев И. Н. Мастера иллюзий. Как идеи превращают нас в рабов. — М.: Форум; Неолит, 2013. — 544 с. — 1000 экз. — ISBN 978-5-91134-678-2.
  5. О.-Я.Л.Бекиш. Медицинская биология. — Минск: Ураджай, 2000. — С. 114. — 518 с.

Ссылки

wiki2.red

Ген — Медицинская энциклопедия

I

(греч. genos род, происхождение)

структурно-функциональная единица генетического материала, наследственный фактор, который можно условно представить как отрезок молекулы ДНК (у некоторых вирусов — молекулы РНК), включающий нуклеотидную последовательность, в которой закодирована первичная структура полипептида (белка) либо молекулы транспортной или рибосомной РНК, синтез которых контролируется этим геном. Обусловливая первичную структуру конкретного белка, ген тем самым определяет формирование отдельного признака организма или клетки.

Предположение о существовании наследственных факторов впервые было высказано Менделем (G.J. Mendel) в 1865 г., который пришел к заключению, что передача признака от родителей потомству обусловлена передачей через половые клетки этих наследственных факторов, каждый из которых передается как нечто целое и независимое. В 1909 г. Иоганнсен (W. Johannsen) предложил обозначать менделевские наследственные факторы термином «гены». В 1911 г. Морганом (Th.Н. Morgan) и его сотрудниками было показано, что ген является участком хромосомы и что отдельная хромосома состоит из генов, последовательно расположенных по ее длине (см. Хромосомы). Каждый ген занимает свое определенное место (локус) на хромосоме. Позднее Морганом и его сотрудниками были созданы первые хромосомные карты, на которых они показали расположение отдельных генов на хромосомах. Совокупность хромосомных (или ядерных) генов, составляющих так называемый геном, и генов, локализованных в цитоплазматических структурах — митохондриях, пластидах, плазмидах, определяет генотип клетки или организма.

Ген может непосредственно определять наличие какого-либо признака (фена) организма или принимать участие в формировании нескольких признаков (явление плейотропии). Однако основная масса признаков у человека формируется в результате взаимодействия многих генов (явление полигении). Утрата гена или его изменение (см. Мутагенез) приводят к изменению признака, контролируемого этим геном. Степень проявления признака, контролируемого конкретным геном (экспрессивность гена), зависит также от условий окружающей среды. В то же время даже в пределах родственной группы особей, находящихся в сходных условиях существования, проявление одного и того же гена может варьировать по степени выраженности. Все это свидетельствует о том, что при формировании признаков генотип выступает как целостная система, функционирующая в строгой зависимости от внутриорганизменной и окружающей среды. Т.о., отдельный признак или совокупность всех признаков организма, т.е. его фенотип, являются результатом взаимодействия генотипа с окружающей средой; способность гена фенотипически проявлять себя тем или иным образом называют пенетрантностью гена.

У диплоидных организмов, т.е. у организмов, соматические клетки которых имеют двойной набор хромосом, гены представлены парой аллелей. Аллель — это одно из возможных состояний или один из возможных вариантов гена; теоретически число аллелей каждого гена неисчислимо, но не все они прошли эволюционный отбор. В гомологичных хромосомах аллельные гены расположены в гомологичных локусах. Аллельная пара генов может быть составлена из идентичных (явление гомозиготности) или различных (явление гетерозиготности) аллелей. У гетерозигот (организмов, аллельные гены которых различны) проявление одного аллеля на уровне признака организма (фенотипическое проявление) может полностью подавлять проявление другого аллеля. Подавляющий аллель называют доминантным, а подавляемый — рецессивным. Соответственно и контролируемые ими признаки носят название доминантных или рецессивных. Фенотипическое проявление рецессивных генов можно наблюдать только у тех организмов, которые оказываются гомозиготными в отношении такого рецессивного гена, т.е. оба аллельных гена у них рецессивны, или в случае, когда ген не имеет аллельной пары, например некоторые гены, расположенные на одной из половых хромосом при их XY-сочетании. У гетерозиготных организмов возможно и совместное (кодоминантное) проявление аллелей. Т.о., понятия «доминантный» и «рецессивный» отражают вклад данного гена в формирование конкретного признака. Свойство гена подавлять или быть подавленным в значительной мере зависит также от генного окружения — генотипической среды, в которой находится этот ген. Перенос гена в другое место хромосомы, влекущий за собой изменение его генного окружения, ведет к утрате этим геном своих свойств, в т.ч. даже такого свойства, выработанного в процессе длительной эволюции, как способность доминировать. Это явление называют эффектом положения гена. При возвращении гена в прежнее положение на хромосоме его способность доминировать восстанавливается.

Изучая механизмы регуляции функции гена, французские генетики Жакоб (F. Jacob) и Моно (J.L. Monod) пришли к заключению, что существуют структурные и регуляторные гены. К структурным генам относятся гены, которые контролируют (кодируют) первичную структуру матричных, или информационных, РНК, а через них последовательность аминокислот в синтезируемых полипептидах (см. Белки). Другую группу структурных генов составляют гены, определяющие последовательность нуклеотидов в полинуклеотидных цепях рибосомной РНК и транспортной РНК (см. Нуклеиновые кислоты).

Регуляторные гены контролируют синтез специфических веществ, так называемых ДНК-связывающих белков, которые регулируют активность структурных генов.

Используя способность некоторых Бактериофагов переносить фрагменты бактериальной хромосомы в другие бактериальные клетки (явление трансдукции), Беквит (J.R. Beckwith) и его сотрудники в 1969 г. впервые выделили, точно определили размер индивидуального гена кишечной палочки и получили его электронограмму. В 1967—1970 гг. Корана (Н.G. Khorana) осуществил химический синтез индивидуального гена.

По мере увеличения возможностей генетического анализа (см. Генетика) были получены все новые доказательства того, что ген, являясь функциональной единицей, вместе с тем имеет весьма сложное строение. Первые доказательства сложности организации гена получили в 1929 г. советские ученые А.С. Серебровский, Н.П. Дубинин и И.И. Агол.

Наряду со структурными и регуляторными генами в молекулах ДНК были обнаружены участки повторяющихся нуклеотидных последовательностей, функции которых не известны, а также мигрирующие нуклеотидные последовательности — так называемые мобильные гены. Найдены также псевдогены, представляющие собой неактивные копии известных генов, но расположенные в других частях генома.

В 1953 г. английский биохимик Крик (F. Н.С. Crick) и американский биохимик Уотсон (J.D. Watson) предложили модель строения молекулы ДНК и высказали предположение, вскоре полностью подтвердившееся, что последовательность нуклеотидов в полинуклеотидной цепи ДНК является кодом, в соответствии с которым осуществляется соединение аминокислотных остатков в полипептидной цепи белковых молекул, строящихся под контролем соответствующих генов. В дальнейшем этот генетический код был изучен более подробно. Было установлено, что включение одного аминокислотного остатка в строящуюся полипептидную цепь определяется сочетанием трех последовательно расположенных нуклеотидов, так называемых триплетов, причем включение одной и той же аминокислоты могут кодировать несколько различных триплетов Доказано, что генетический код универсален, т.е. он един для всех живых организмов. Реализация информации, «записанной» в гене, осуществляется с помощью посредника, которым является одна из разновидностей РНК — матричная, или информационная, РНК (мРНК). Синтез мРНК происходит на молекуле ДНК как на матрице. Такой матричный синтез обеспечивает точность «переписывания» (транскрипции) особенностей нуклеотидной последовательности гена на молекулу мРНК. Синтезированная мРНК из ядра клетки поступает в цитоплазму, где на рибосомах (см. Клетка) происходит реализация генетической информации (процесс трансляции), которая воплощается в последовательность аминокислот, соединяющихся в полипептидную цепь белка.

Средняя по размерам молекула белка содержит около 300 аминокислотных остатков. Следовательно, средний ген должен содержать не менее 1000—1500 нуклеотидов. Однако количество нуклеотидных пар в обычной молекуле ДНК по крайней мере в 10 раз превышает количество генов. Такая «избыточность» ДНК объясняется тем, что, например, у человека только 6—10% всей ДНК составляют кодирующие специфические нуклеотидные последовательности, остальные нуклеотиды в генетическом кодировании непосредственно не участвуют.

Большинство генов эукариот имеет прерывистую структуру: участок ДНК, кодирующий аминокислотную последовательность полипептидной цепи белка, разделен некодирующими вставками на несколько частей. Кроме того, некоторые некодирующие нуклеотидные последовательности обрамляют транскрибируемую единицу с концов. При транскрипции и те, и другие участки ДНК «считываются» в виде единой молекулы-предшественницы мРНК. Затем некодирующие участки выщепляются, а кодирующие участки соединяются друг с другом, образуя молекулу «зрелой» мРНК, способной транслироваться в молекулу белка. Другие некодирующие нуклеотидные последовательности могут играть роль сигнальных последовательностей, ответственных за начало определенных процессов в клетке. К ним относятся так называемые промоторы транскрипции, точки начала репликации ДНК, участки скручивания хромосом и др. Некодирующие последовательности состоят из множества семейств, характеризующихся разной степенью повторяемости нуклеотидов и различной организацией. Однако только немногие из этих последовательностей изучены настолько, чтобы определенной последовательности могла быть приписана определенная функция.

Т.о., ген представляет собой сложную микросистему, обеспечивающую жизнедеятельность клетки и организма в целом. Теория гена, постоянно углубляющаяся и развивающаяся, является основой генетической инженерии (Генетическая инженерия), конечной целью которой служит создание организмов с новыми наследственными свойствами, а также разработка способов лечения генетически обусловленных заболеваний (см. Наследственные болезни).

Библиогр.: Бочков Н.П. Генетика человека, М., 1978; Бочков Н.П., Захаров А.ф. и Иванов В.И. Медицинская генетика, М., 1984; Дубинин Н.П. Ген. БМЭ, 3-е изд., т. 5, с. 237, М., 1977; Льюин Б. Гены, пер. с англ., М., 1987.

II

(-ы) (греч. genos род, рождение, происхождение)

структурная и функциональная единица наследственности, контролирующая образование какого-либо признака, представляющая собой отрезок молекулы дезоксирибонуклеиновой кислоты (у некоторых вирусов — рибонуклеиновой кислоты).

Гены аллельные — см. Аллели.

Ген амбивалентный (лат. приставка ambi- вокруг, с обеих сторон + valens, valentis сильный) — Г., оказывающий как полезное, так и вредное действие на его носителя.

Ген аутосомный — Г., локализованный в любой хромосоме, за исключением половых.

Ген внехромосомный (син. Г. нехромосомный) — Г., локализованный вне хромосом в той или иной цитоплазматической структуре.

Ген главный — см. Олигоген.

Ген голандрический (греч. holos весь, полностью + anēr, andros мужчина) — Г., локализованный в участке Y-хромосомы, не имеющем гомологии в X-хромосоме, и поэтому абсолютно сцепленный с Y-хромосомой.

Ген гомеотический (греч. homoios подобный) — Г., действие которого обусловливает трансформацию эмбрионального зачатка одного органа в другой, возникающий обычно в несвойственном ему месте.

Гены гомодинамические — Г., контролирующие одновременно одни и те же процессы развития.

Гены гомологичные — Г. особей одного и того же биологического вида или разных видов с одинаковой функцией и локализацией относительно других генов.

Ген диагинический (греч. dia через + gynē женщина) — Г. X-хромосомы, переданной от матери к сыну.

Ген диандрический (греч. dia через + anēr, andros мужчина) — Г. X-хромосомы, переданной от отца к дочери.

Ген доминантный (лат. dominans, dominantis господствующий) — Г., сходно проявляющийся в гетеро- и гомозиготном состоянии и подавляющий проявление других аллелей этого гена.

Ген зависимый (син. Г. криптомерный — устар.) — Г., контролирующий при полигении образование специфического признака лишь во взаимодействии с другими неаллельными генами.

Ген идиоморфный (греч. idios своеобразный, необычный + morphē вид, форма) — Г., у которого один аллель заполняет всю популяцию, а все другие аллели вместе встречаются с частотой, не превышающей 1%.

Ген изоляционный — Г., в гетерозиготном состоянии обусловливающий снижение жизнеспособности или плодовитости особи.

Гены комбинационные — Г., детерминирующие различные процессы развития особи и образующие вторичный признак только путем комбинированного действия.

Гены компенсационные — как правило, рецессивные Г., взаимно изменяющие фенотипическое проявление друг друга.

Ген комплексный — Г., состоящий из частей, контролирующих один и тот же признак, не могущих быть разделенными при кроссинговере.

Гены комплементарные (лат. complementum дополнение) — неаллельные Г., каждый из которых может по-разному изменять один и тот же признак.

Ген, контролируемый полом (син. Г., модифицированный полом) — Г., присутствующий в генотипе обоих полов, но проявляющийся по-разному у особей мужского и женского пола.

Ген криптомерный (устар.; греч. kryptos скрытый + meros часть) — см. Ген зависимый.

Ген лабильный — Г., переходящий из одного стабильного состояния в другое через ряд мелких мутационных изменений.

Ген лабильный в развитии — Г., проявление которого сильно варьирует или отмечается не у всех особей.

Ген лабильный к среде — Г., проявление которого в значительной степени зависит от условий окружающей и внутренней среды.

Ген летальный — Г., обусловливающий гибель особи обычно до достижения ею половой зрелости.

Ген малый — см. Полиген.

Ген «межвидовой» — Г., детерминирующий межвидовые барьеры и не передающийся при межвидовом скрещивании.

Гены множественные — см. Гены полимерные.

Ген, модифицированный полом — см. Ген, контролируемый полом.

Ген мутабельный (лат. mutabilis изменчивый) — Г., отличающийся высокой частотой спонтанного мутирования.

Гены неаллельные — Г., занимающие неидентичные локусы хромосом.

Ген независимый — Г., в случае полигении способный самостоятельно детерминировать образование признака без участия других генов, контролирующих этот признак.

Ген нехромосомный — см. Ген внехромосомный.

Ген, ограниченный полом — Г., присутствующий у особей обоих полов, но фенотипически проявляющийся только у особей одного пола.

Ген плазмочувствительный — локализованный в хромосоме Г., проявление которого зависит от действия внехромосомных Г.

Ген плейотропный (греч. pleiōn более многочисленный + tropos направление) — Г., принимающий участие в формировании одновременно нескольких признаков.

Гены полимерные (греч. polymerēs состоящий из многих частей, множественный; син.: аддитивные факторы, Г. множественные, множественные факторы) — неаллельные Г., принимающие участие в формировании одного и того же признака.

Гены полипликатные (греч. poly- много + лат. plico, plicatum складывать) — идентичные пары Г. с одинаковым фенотипическим проявлением, но локализованные в разных хромосомах; различают дупликатные, трипликатные, квадрипликатные Г. и т.д., соответственно числу таких пар.

Ген полиургический (греч. poly- много + греч. ergon действие) — Г., вызывающий неодинаковый эффект в различных частях организма соответственно специфическим свойствам протоплазмы.

Ген регуляторный — Г., осуществляющий контроль активности оперона.

Ген рецессивный — Г., проявляющийся только в гомозиготном состоянии.

Ген сигнальный (син. ген-маркер) — Г. с известной локализацией и проявлением, используемый для картирования данной хромосомы.

Ген сложный — Г., состоящий из частей, не разделяемых кроссинговером, но обладающих независимой мутабельностью и частично независимых друг от друга.

Ген, стабильный в развитии — Г., характеризующийся регулярным и не варьирующим по силе проявлением.

Ген структурный (син. цистрон структурный) — Г., определяющий последовательность аминокислот в полипептидной цепи.

Ген, сцепленный с полом — Г., локализованный в половой хромосоме; различают Г., абсолютно и неполностью сцепленные с полом.

Гены цепные — группа Г., каждый из которых контролирует прохождение отдельного этапа в цепи реакций, обусловливающих в итоге образование признака.

Гены эквилокальные (лат. aequus равный, одинаковый + locus место, положение) — Г., занимающие идентичные участки гомологичных хромосом.

Ген эпистатический (греч. epistasis остановка, задержка) — см. Ген-ингибитор.

Источник: Медицинская энциклопедия на Gufo.me


Значения в других словарях

  1. ген — Материальный носитель наследственности, единица наследственной информации, способная к воспроизведению и расположенная в определенном локусе хромосомы. Обеспечивает преемственность в поколениях того или иного признака или свойства организма. Микробиология. Словарь терминов
  2. ген — ГЕН (от греч. genos — род, происхождение) участок молекулы ДНК (в некоторых случаях РНК), в котором закодирована информация о биосинтезе одной полипептидной цепи с определенной аминокислотной последовательностью. Г. — единица наследств. Химическая энциклопедия
  3. Ген — (греч. genos – происхождение). Структурная и функциональная единица наследственности, единица наследственной информации. Контролирует образование специфического признака. Представляет собой отрезок молекулы дезоксирибонуклеиновой или рибонуклеиновой кислоты. Толковый словарь психиатрических терминов
  4. ГЕН — ГЕН, элемент, посредством которого наследственные свойства и особенности передаются из прколения в поколение у растений и животных. Это отрезок ДНК, который содержит определенные белки или пептиды (см. ГЕНЕТИЧЕСКИЙ код). Научно-технический словарь
  5. ген — Единица генетического материала; участок молекулы ДНК (у некоторых вирусов – РНК), определяющий (кодирующий) возможность развития какого-либо признака. Ген – функционально неделимая единица, т.е. Биология. Современная энциклопедия
  6. Ген — (от греч. génos — род, происхождение) элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) — ДНК (у некоторых вирусов — рибонуклеиновой кислоты (См. Большая советская энциклопедия
  7. ген — Ген, гены, гена, генов, гену, генам, ген, гены, геном, генами, гене, генах Грамматический словарь Зализняка
  8. ГЕН — ГЕН (от греч. genos — род, происхождение) (наследственный фактор) — единица наследственного материала, ответственная за формирование какого-либо элементарного признака. У высших организмов (эукариот) входит в состав хромосом. Большой энциклопедический словарь
  9. ген — ГЕН (от греч. genos — род, происхождение), наследственный фактор, материальная единица наследственности, ответственная за формирование к.-л. элементарного признака. У высших организмов (эукариот) входит в состав хромосом. Совокупность всех… Сельскохозяйственный словарь
  10. ген — ГЕН см. Гены. Толковый словарь Кузнецова
  11. ген — ГЕН — единица наследственнного вещества; локализованный участок хромосомы (локус), содержащий ДНК и обусловливающий передачу наследственной информации от клетки к клетке и ее реализацию путем синтеза информационной, матричной и рибосомальной РНК. Ботаника. Словарь терминов
  12. ген — ГЕН, гена, ·муж. (·греч. genos — род) (биол.). Предполагаемый зачаток наследственных свойств организма. Учение об устойчивых генах. Толковый словарь Ушакова
  13. ген — см. гены. Малый академический словарь
  14. Ген — Последовательность цепочек ДНК, которые определяют порядок аминокислот в целом протеине или, иногда, в части протеина. Ген может состоять из сотен и тысяч цепочек ДНК, См. аллель. Физическая антропология
  15. ген — ГЕН Материальный носитель наследственности. Структурная и функциональная единица информации, способная к воспроизведению и расположенная в хромосоме. (Терминология спорта. Толковый словарь спортивных терминов, 2001) Словарь спортивных терминов
  16. ГЕН — ГЕН (от греч. genos — род, происхождение) — англ. gene; нем. Gen. Элементарная единица наследственности, посредством к-рой происходит «запись», хранение и передача наследственной информации от поколения к поколению. см. ГЕНЕТИКА, ГЕНОТИП, СОЦИОБИОЛОГИЯ. Социологический словарь
  17. ген — ген м. 1. Материальный носитель наследственности, находящийся в хромосомах клеточного ядра и участвующий в формировании признаков и свойств организма. 2. перен. Зародыш, зачаток. Толковый словарь Ефремовой
  18. ген — (от греч. genos — род, происхождение), наследственный фа ктор, функционально неделимая единица генетич. материала; участок молекулы ДНК (у нек-рых вирусов РНК), кодирующий первичную структуру полипептида… Биологический энциклопедический словарь
  19. ген — Гена, м. [греч. genos – род] (биол.). Материальный носитель наследственности, единица наследственной (генетической) информации, способная к воспроизведению и расположенная в определенном участке (локусе) данной хромосомы. Большой словарь иностранных слов
  20. ген — ГЕН, а, м. (спец.). Материальный носитель наследственности, единица наследственного материала, определяющая формирование элементарного признака в живом организме. Строение гена. | прил. генный, ая, ое и генетический, ая, ое. Толковый словарь Ожегова
  21. ген — сущ., кол-во синонимов: 14 аллель 3 ген-кандидат 1 ген-модификатор 1 ген-регулятор 1 ген-стартер 1 ген-супрессор 2 иммуноген 1 олигоген 1 онкоген 2 плазмаген 1 полиген 1 протоген 2 протоонкоген 1 супрессор 3 Словарь синонимов русского языка
  22. ген — Ген/. Морфемно-орфографический словарь

gufo.me

Ген — это… Что такое Ген?

структурно-функциональная единица генетического материала, наследственный фактор, который можно условно представить как отрезок молекулы ДНК (у некоторых вирусов — молекулы РНК), включающий нуклеотидную последовательность, в которой закодирована первичная структура полипептида (белка) либо молекулы транспортной или рибосомной РНК, синтез которых контролируется этим геном. Обусловливая первичную структуру конкретного белка, ген тем самым определяет формирование отдельного признака организма или клетки. Предположение о существовании наследственных факторов впервые было высказано Менделем (G.J. Mendel) в 1865 г., который пришел к заключению, что передача признака от родителей потомству обусловлена передачей через половые клетки этих наследственных факторов, каждый из которых передается как нечто целое и независимое. В 1909 г. Иоганнсен (W. Johannsen) предложил обозначать менделевские наследственные факторы термином «гены». В 1911 г. Морганом (Th.Н. Morgan) и его сотрудниками было показано, что ген является участком хромосомы и что отдельная хромосома состоит из генов, последовательно расположенных по ее длине (см. Хромосомы). Каждый ген занимает свое определенное место (локус) на хромосоме. Позднее Морганом и его сотрудниками были созданы первые хромосомные карты, на которых они показали расположение отдельных генов на хромосомах. Совокупность хромосомных (или ядерных) генов, составляющих так называемый геном, и генов, локализованных в цитоплазматических структурах — митохондриях, пластидах, плазмидах, определяет генотип клетки или организма. Ген может непосредственно определять наличие какого-либо признака (фена) организма или принимать участие в формировании нескольких признаков (явление плейотропии). Однако основная масса признаков у человека формируется в результате взаимодействия многих генов (явление полигении). Утрата гена или его изменение (см. Мутагенез) приводят к изменению признака, контролируемого этим геном. Степень проявления признака, контролируемого конкретным геном (экспрессивность гена), зависит также от условий окружающей среды. В то же время даже в пределах родственной группы особей, находящихся в сходных условиях существования, проявление одного и того же гена может варьировать по степени выраженности. Все это свидетельствует о том, что при формировании признаков генотип выступает как целостная система, функционирующая в строгой зависимости от внутриорганизменной и окружающей среды. Т.о., отдельный признак или совокупность всех признаков организма, т.е. его фенотип, являются результатом взаимодействия генотипа с окружающей средой; способность гена фенотипически проявлять себя тем или иным образом называют пенетрантностью гена. У диплоидных организмов, т.е. у организмов, соматические клетки которых имеют двойной набор хромосом, гены представлены парой аллелей. Аллель — это одно из возможных состояний или один из возможных вариантов гена; теоретически число аллелей каждого гена неисчислимо, но не все они прошли эволюционный отбор. В гомологичных хромосомах аллельные гены расположены в гомологичных локусах. Аллельная пара генов может быть составлена из идентичных (явление гомозиготности) или различных (явление гетерозиготности) аллелей. У гетерозигот (организмов, аллельные гены которых различны) проявление одного аллеля на уровне признака организма (фенотипическое проявление) может полностью подавлять проявление другого аллеля. Подавляющий аллель называют доминантным, а подавляемый — рецессивным. Соответственно и контролируемые ими признаки носят название доминантных или рецессивных. Фенотипическое проявление рецессивных генов можно наблюдать только у тех организмов, которые оказываются гомозиготными в отношении такого рецессивного гена, т.е. оба аллельных гена у них рецессивны, или в случае, когда ген не имеет аллельной пары, например некоторые гены, расположенные на одной из половых хромосом при их XY-сочетании. У гетерозиготных организмов возможно и совместное (кодоминантное) проявление аллелей. Т.о., понятия «доминантный» и «рецессивный» отражают вклад данного гена в формирование конкретного признака. Свойство гена подавлять или быть подавленным в значительной мере зависит также от генного окружения — генотипической среды, в которой находится этот ген. Перенос гена в другое место хромосомы, влекущий за собой изменение его генного окружения, ведет к утрате этим геном своих свойств, в т.ч. даже такого свойства, выработанного в процессе длительной эволюции, как способность доминировать. Это явление называют эффектом положения гена. При возвращении гена в прежнее положение на хромосоме его способность доминировать восстанавливается. Изучая механизмы регуляции функции гена, французские генетики Жакоб (F. Jacob) и Моно (J.L. Monod) пришли к заключению, что существуют структурные и регуляторные гены. К структурным генам относятся гены, которые контролируют (кодируют) первичную структуру матричных, или информационных, РНК, а через них последовательность аминокислот в синтезируемых полипептидах (см. Белки). Другую группу структурных генов составляют гены, определяющие последовательность нуклеотидов в полинуклеотидных цепях рибосомной РНК и транспортной РНК (см. Нуклеиновые кислоты). Регуляторные гены контролируют синтез специфических веществ, так называемых ДНК-связывающих белков, которые регулируют активность структурных генов. Используя способность некоторых Бактериофагов переносить фрагменты бактериальной хромосомы в другие бактериальные клетки (явление трансдукции), Беквит (J.R. Beckwith) и его сотрудники в 1969 г. впервые выделили, точно определили размер индивидуального гена кишечной палочки и получили его электронограмму. В 1967—1970 гг. Корана (Н.G. Khorana) осуществил химический синтез индивидуального гена. По мере увеличения возможностей генетического анализа (см. Генетика) были получены все новые доказательства того, что ген, являясь функциональной единицей, вместе с тем имеет весьма сложное строение. Первые доказательства сложности организации гена получили в 1929 г. советские ученые А.С. Серебровский, Н.П. Дубинин и И.И. Агол.

Наряду со структурными и регуляторными генами в молекулах ДНК были обнаружены участки повторяющихся нуклеотидных последовательностей, функции которых не известны, а также мигрирующие нуклеотидные последовательности — так называемые мобильные гены. Найдены также псевдогены, представляющие собой неактивные копии известных генов, но расположенные в других частях генома.

В 1953 г. английский биохимик Крик (F. Н.С. Crick) и американский биохимик Уотсон (J.D. Watson) предложили модель строения молекулы ДНК и высказали предположение, вскоре полностью подтвердившееся, что последовательность нуклеотидов в полинуклеотидной цепи ДНК является кодом, в соответствии с которым осуществляется соединение аминокислотных остатков в полипептидной цепи белковых молекул, строящихся под контролем соответствующих генов. В дальнейшем этот генетический код был изучен более подробно. Было установлено, что включение одного аминокислотного остатка в строящуюся полипептидную цепь определяется сочетанием трех последовательно расположенных нуклеотидов, так называемых триплетов, причем включение одной и той же аминокислоты могут кодировать несколько различных триплетов Доказано, что генетический код универсален, т.е. он един для всех живых организмов. Реализация информации, «записанной» в гене, осуществляется с помощью посредника, которым является одна из разновидностей РНК — матричная, или информационная, РНК (мРНК). Синтез мРНК происходит на молекуле ДНК как на матрице. Такой матричный синтез обеспечивает точность «переписывания» (транскрипции) особенностей нуклеотидной последовательности гена на молекулу мРНК. Синтезированная мРНК из ядра клетки поступает в цитоплазму, где на рибосомах (см. Клетка) происходит реализация генетической информации (процесс трансляции), которая воплощается в последовательность аминокислот, соединяющихся в полипептидную цепь белка. Средняя по размерам молекула белка содержит около 300 аминокислотных остатков. Следовательно, средний ген должен содержать не менее 1000—1500 нуклеотидов. Однако количество нуклеотидных пар в обычной молекуле ДНК по крайней мере в 10 раз превышает количество генов. Такая «избыточность» ДНК объясняется тем, что, например, у человека только 6—10% всей ДНК составляют кодирующие специфические нуклеотидные последовательности, остальные нуклеотиды в генетическом кодировании непосредственно не участвуют. Большинство генов эукариот имеет прерывистую структуру: участок ДНК, кодирующий аминокислотную последовательность полипептидной цепи белка, разделен некодирующими вставками на несколько частей. Кроме того, некоторые некодирующие нуклеотидные последовательности обрамляют транскрибируемую единицу с концов. При транскрипции и те, и другие участки ДНК «считываются» в виде единой молекулы-предшественницы мРНК. Затем некодирующие участки выщепляются, а кодирующие участки соединяются друг с другом, образуя молекулу «зрелой» мРНК, способной транслироваться в молекулу белка. Другие некодирующие нуклеотидные последовательности могут играть роль сигнальных последовательностей, ответственных за начало определенных процессов в клетке. К ним относятся так называемые промоторы транскрипции, точки начала репликации ДНК, участки скручивания хромосом и др. Некодирующие последовательности состоят из множества семейств, характеризующихся разной степенью повторяемости нуклеотидов и различной организацией. Однако только немногие из этих последовательностей изучены настолько, чтобы определенной последовательности могла быть приписана определенная функция. Т.о., ген представляет собой сложную микросистему, обеспечивающую жизнедеятельность клетки и организма в целом. Теория гена, постоянно углубляющаяся и развивающаяся, является основой генетической инженерии (Генетическая инженерия), конечной целью которой служит создание организмов с новыми наследственными свойствами, а также разработка способов лечения генетически обусловленных заболеваний (см. Наследственные болезни). Библиогр.: Бочков Н.П. Генетика человека, М., 1978; Бочков Н.П., Захаров А.ф. и Иванов В.И. Медицинская генетика, М., 1984; Дубинин Н.П. Ген. БМЭ, 3-е изд., т. 5, с. 237, М., 1977; Льюин Б. Гены, пер. с англ., М., 1987.

структурная и функциональная единица наследственности, контролирующая образование какого-либо признака, представляющая собой отрезок молекулы дезоксирибонуклеиновой кислоты (у некоторых вирусов — рибонуклеиновой кислоты).

Ген амбивале́нтный (лат. приставка ambi- вокруг, с обеих сторон + valens, valentis сильный) — Г., оказывающий как полезное, так и вредное действие на его носителя.

Ген аутосо́мный — Г., локализованный в любой хромосоме, за исключением половых.

Ген внехромосо́мный (син. Г. нехромосомный) — Г., локализованный вне хромосом в той или иной цитоплазматической структуре.

Ген голандри́ческий (греч. holos весь, полностью + anēr, andros мужчина) — Г., локализованный в участке Y-хромосомы, не имеющем гомологии в X-хромосоме, и поэтому абсолютно сцепленный с Y-хромосомой.

Ген гомеоти́ческий (греч. homoios подобный) — Г., действие которого обусловливает трансформацию эмбрионального зачатка одного органа в другой, возникающий обычно в несвойственном ему месте.

Ге́ны гомодинами́ческие — Г., контролирующие одновременно одни и те же процессы развития.

Ге́ны гомологи́чные — Г. особей одного и того же биологического вида или разных видов с одинаковой функцией и локализацией относительно других генов.

Ген диагини́ческий (греч. dia через + gynē женщина) — Г. X-хромосомы, переданной от матери к сыну.

Ген диандри́ческий (греч. dia через + anēr, andros мужчина) — Г. X-хромосомы, переданной от отца к дочери.

Ген домина́нтный (лат. dominans, dominantis господствующий) — Г., сходно проявляющийся в гетеро- и гомозиготном состоянии и подавляющий проявление других аллелей этого гена.

Ген зави́симый (син. Г. криптомерный — устар.) — Г., контролирующий при полигении образование специфического признака лишь во взаимодействии с другими неаллельными генами.

Ген идиомо́рфный (греч. idios своеобразный, необычный + morphē вид, форма) — Г., у которого один аллель заполняет всю популяцию, а все другие аллели вместе встречаются с частотой, не превышающей 1%.

Ген изоляцио́нный — Г., в гетерозиготном состоянии обусловливающий снижение жизнеспособности или плодовитости особи.

Ге́ны комбинацио́нные — Г., детерминирующие различные процессы развития особи и образующие вторичный признак только путем комбинированного действия.

Ге́ны компенсацио́нные — как правило, рецессивные Г., взаимно изменяющие фенотипическое проявление друг друга.

Ген ко́мплексный — Г., состоящий из частей, контролирующих один и тот же признак, не могущих быть разделенными при кроссинговере.

Ге́ны комплемента́рные (лат. complementum дополнение) — неаллельные Г., каждый из которых может по-разному изменять один и тот же признак.

Ген, контроли́руемый по́лом (син. Г., модифицированный полом) — Г., присутствующий в генотипе обоих полов, но проявляющийся по-разному у особей мужского и женского пола.

Ген криптоме́рный (устар.; греч. kryptos скрытый + meros часть) — см. Ген зависимый.

Ген лаби́льный — Г., переходящий из одного стабильного состояния в другое через ряд мелких мутационных изменений.

Ген лаби́льный в разви́тии — Г., проявление которого сильно варьирует или отмечается не у всех особей.

Ген лаби́льный к среде́ — Г., проявление которого в значительной степени зависит от условий окружающей и внутренней среды.

Ген лета́льный — Г., обусловливающий гибель особи обычно до достижения ею половой зрелости.

Ген «межвидово́й» — Г., детерминирующий межвидовые барьеры и не передающийся при межвидовом скрещивании.

Ге́ны мно́жественные — см. Гены полимерные.

Ген, модифици́рованный по́лом — см. Ген, контролируемый полом.

Ген мута́бельный (лат. mutabilis изменчивый) — Г., отличающийся высокой частотой спонтанного мутирования.

Ге́ны неалле́льные — Г., занимающие неидентичные локусы хромосом.

Ген незави́симый — Г., в случае полигении способный самостоятельно детерминировать образование признака без участия других генов, контролирующих этот признак.

Ген нехромосо́мный — см. Ген внехромосомный.

Ген, ограни́ченный по́лом — Г., присутствующий у особей обоих полов, но фенотипически проявляющийся только у особей одного пола.

Ген плазмочувстви́тельный — локализованный в хромосоме Г., проявление которого зависит от действия внехромосомных Г.

Ген плейотро́пный (греч. pleiōn более многочисленный + tropos направление) — Г., принимающий участие в формировании одновременно нескольких признаков.

Ге́ны полиме́рные (греч. polymerēs состоящий из многих частей, множественный; син.: аддитивные факторы, Г. множественные, множественные факторы) — неаллельные Г., принимающие участие в формировании одного и того же признака.

Ге́ны полиплика́тные (греч. poly- много + лат. plico, plicatum складывать) — идентичные пары Г. с одинаковым фенотипическим проявлением, но локализованные в разных хромосомах; различают дупликатные, трипликатные, квадрипликатные Г. и т.д., соответственно числу таких пар.

Ген полиурги́ческий (греч. poly- много + греч. ergon действие) — Г., вызывающий неодинаковый эффект в различных частях организма соответственно специфическим свойствам протоплазмы.

Ген регулято́рный — Г., осуществляющий контроль активности оперона.

Ген рецесси́вный — Г., проявляющийся только в гомозиготном состоянии.

Ген сигна́льный (син. ген-маркер) — Г. с известной локализацией и проявлением, используемый для картирования данной хромосомы.

Ген сло́жный — Г., состоящий из частей, не разделяемых кроссинговером, но обладающих независимой мутабельностью и частично независимых друг от друга.

Ген, стаби́льный в разви́тии — Г., характеризующийся регулярным и не варьирующим по силе проявлением.

Ген структу́рный (син. цистрон структурный) — Г., определяющий последовательность аминокислот в полипептидной цепи.

Ген, сце́пленный с по́лом — Г., локализованный в половой хромосоме; различают Г., абсолютно и неполностью сцепленные с полом.

Ге́ны цепны́е — группа Г., каждый из которых контролирует прохождение отдельного этапа в цепи реакций, обусловливающих в итоге образование признака.

Ге́ны эквилока́льные (лат. aequus равный, одинаковый + locus место, положение) — Г., занимающие идентичные участки гомологичных хромосом.

Ген эпистати́ческий (греч. epistasis остановка, задержка) — см. Ген-ингибитор.

dic.academic.ru

как это было и как это будет

Это было семь лет назад — 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп — International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics — объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества — постгеномная эра.

Что может дать нам расшифровка генома, и стоят ли потраченные средства и усилия достигнутого результата? Фрэнсис Коллинз (Francis S. Collins), руководитель американской программы «Геном человека», в 2000 году дал следующий прогноз развития медицины и биологии в постгеномную эру:

  • 2010 год — генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год — на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год — определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год — Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Как видно из прогноза, геномная информация в недалеком будущем может стать основой лечения и профилактики множества болезней. Без информации о своих генах (а она умещается на стандарный DVD-диск) человек в будущем сможет вылечить разве что насморк у какого-нибудь целителя в джунглях. Это кажется фантастикой? Но когда-то такой же фантастикой была поголовная вакцинация от оспы или интернет (заметьте, в 70-х его еще не существовало)! В будущем генетический код ребенка будут выдавать родителям в роддоме. Теоретически, при наличии такого диска, лечение и предотвращение любых недугов отдельно взятого человека станет сущим пустяком. Профессиональный врач сможет в предельно сжатые сроки поставить диагноз, назначить эффективное лечение, и даже определить вероятность появления разных болезней в будущем. К примеру, современные генетические тесты уже позволяют точно определить степень предрасположенности женщины к раку груди. Почти наверняка, лет через 40–50 ни один уважающий себя врач без генетического кода не захочет «лечить вслепую» — подобно тому, как сегодня хирургия не может обойтись без рентгеновского снимка.

Давайте зададимся вопросом — а достоверно ли сказанное, или, может быть, в действительности всё будет наоборот? Смогут ли люди наконец победить все болезни и придут ли они ко всеобщему счастью? Увы. Начнем с того, что Земля маленькая, и счастья на всех не хватит. По правде сказать, его не хватит даже для половины населения развивающихся стран. «Счастье» предназначено в основном для государств, развитых в плане науки, в частности — наук биологических. Например методика, с помощью которой можно «прочесть» генетический код любого человека, уже давно запатентована. Это отлично отработанная автоматизированная технология — правда, дорогостоящая и очень тонкая. Хочешь, покупай лицензию, а хочешь — придумывай новую методику. Только вот денег на подобную разработку хватит далеко не у всех стран! В итоге ряд государств будет обладать медициной, существенно опережающей уровень остального мира. Естественно, в слаборазвитых странах Красным Крестом будут строиться благотворительные больницы, госпитали и геномные центры. И постепенно это приведет к тому, что генетическая информация пациентов развивающихся стран (которых большинство), сосредоточится у двух-трех держав, финансирующих эту благотворительность. Что можно сделать, имея такую информацию — даже представить трудно. Может, и ничего страшного. Однако возможен и другой исход. Битва за приоритет, сопровождавшая секвенирование генома, наглядно подтверждает важность доступности генетической информации. Давайте кратко вспомним некоторые факты из истории программы «Геном человека».

Противники расшифровки генома считали поставленную задачу нереальной, ведь ДНК человека в десятки тысяч раз длиннее молекул ДНК вирусов или плазмид. Главный аргумент против был: «проект потребует миллиарды долларов, которых недосчитаются другие области науки, поэтому геномный проект затормозит развитие науки в целом. А если все-таки деньги найдутся и геном человека будет расшифрован, то полученная в результате информация не оправдает затрат…» Однако Джеймс Уотсон, один из первооткрывателей структуры ДНК и идеолог программы тотального прочтения генетической информации, остроумно парировал: «лучше не поймать большую рыбу, чем не поймать маленькую» [1], [2]. Аргумент учёного был услышан — проблему генома вынесли на обсуждение в конгресс США, и в итоге была принята национальная программа «Геном человека».

В американском городе Бетесда, что недалеко от Вашингтона, находится один из координационных центров HUGO (HUman Genome Organization). Центр координирует научную работу по теме «Геном человека» в шести странах — Германии, Англии, Франции, Японии, Китае и США. В работу включились учёные из многих стран мира, объединенные в три команды: две межгосударственные — американская Human Genome Project и британская из Wellcome Trust Sanger Institute — и частная корпорация из штата Мериленд, включившаяся в игру чуть позже, — Celera Genomics. Кстати, это пожалуй первый случай в биологии, когда на таком высоком уровне частная фирма соревновалась с межгосударственными организациями.

Борьба происходила с использованием колоссальных средств и возможностей. Как отмечали некоторое время назад российские эксперты, Celera стояла на плечах у программы «Геном Человека», то есть использовала то, что уже было сделано в рамках глобального проекта. Действительно, Celera Genomics подключилась к программе не сначала, а когда проект уже шёл полным ходом. Однако специалисты из Celera усовершенствовали алгоритм секвенирования. Кроме того, по их заказу был построен суперкомпьютер, который позволял складывать выявляемые «кирпичики» ДНК в результирующую последовательность быстрее и точнее. Конечно, все это не давало компании Celera безоговорочного преимущества, однако считаться с ней как с полноправным участником гонки заставило.

Появление Celera Genomics резко повысило напряженность — те, кто был занят в государственных программах, почувствовали жёсткую конкуренцию. Кроме того, после создания компании остро встал вопрос об эффективности использования государственных капиталовложений. Во главе Celera стал профессор Крейг Вентер (Craig Venter) [3], который имел огромный опыт научной работы по государственной программе «Геном человека». Именно он и заявил, что все публичные программы малоэффективны и что в его фирме геном секвенируют быстрее и дешевле. А тут появился ещё один фактор — спохватились крупные фармацевтические компании. Дело в том, что если вся информация о геноме окажется в открытом доступе, они лишатся интеллектуальной собственности, и нечего будет патентовать. Озабоченные этим, они вложили миллиарды долларов в Celera Genomics (с которой, вероятно, было проще договориться). Это еще более укрепило её позиции. В ответ на это коллективам межгосударственного консорциума срочно пришлось повышать эффективность работ по расшифровке генома. Сначала работа шла несогласованно, но потом были достигнуты определенные формы сосуществования — и гонка начала наращивать темп.

Финал был красивым — конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека [4], [5]. Произошло это, как мы уже писали — 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Рисунок 1. «Гонка за генóм», в которой участвовали межгосударственная и частная компании, формально завершилась «ничьей»: обе группы исследователей опубликовали свои достижения практически одновременно. Руководитель частной компании Celera Genomics Крейг Вентер опубликовал свою работу в журнале Science в соавторстве с ~270 учёными, работавшими под его началом [5]. Работа, выполненная международным консорциумом по секвенированию человеческого генома (IHGSC), опубликована в журнале Nature, и полный список авторов насчитывает около 2800 человек, работавших в почти трёх десятках центров по всему миру [4].

Исследования в сумме продлились 15 лет. Создание первого «чернового» варианта генома человека обошлось в 300 миллионов долларов. Однако на все исследования по этой теме, включая сравнительные анализы и решение ряда этических проблем, было выделено в сумме около трех миллиардов долларов. Celera Genomics вложила примерно столько же, правда, она истратила их всего за шесть лет. Цена колоссальная, но эта сумма ничтожна в сравнении с той выгодой, которую получит страна-разработчик от ожидаемой вскоре окончательной победы над десятками серьезных заболеваний. В начале октября 2002 года в интервью «Ассошиэйтед пресс» президент Celera Genomics Крейг Вентер заявил, что одна из его некоммерческих организаций планирует заняться изготовлением компакт-дисков, содержащих максимум информации о ДНК клиента. Предварительная стоимость такого заказа — более 700 тысяч долларов. А одному из первооткрывателей структуры ДНК — доктору Джеймсу Уотсону — уже в этом году были подарены два DVD-диска с его геномом общей стоимостью 1 млн. долларов [6], — как видим, цены падают. Так, вице-президент фирмы 454 Life Sciences Майкл Эгхолм (Michael Egholm) сообщил, что в скором времени компания сможет довести цену расшифровки до 100 тыс. долларов.

Широкая известность и масштабное финансирование — палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты — между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies) настаивал, что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Очевидно, что наспех «приватизированная» генетическая информация будет в ближайшие годы тщательно проверяться, пока точное число генов станет, наконец, общепринятым. Но настораживает тот факт, что в процессе «познания» патентуется вообще все, что только можно запатентовать. Тут даже не шкура не убитого медведя, а вообще все, что находилось в берлоге, было поделено! Кстати, на сегодня дебаты сбавили обороты, и геном человека официально насчитывает только 21667 генов (версия NCBI 35, датированная октябрём 2005 года). Следует отметить, что пока большая часть информации всё-таки остаётся общедоступной. Сейчас существуют базы данных, в которых аккумулирована информация о структуре генома не только человека, но и геномов многих других организмов (например, EnsEMBL). Однако попытки получить исключительные права на использование каких-либо генов или последовательностей в коммерческих целях всегда были, есть сейчас и будут предприниматься впредь.

На сегодня основные цели структурной части программы уже в основном выполнены — геном человека почти полностью прочитан. Первый, «черновой» вариант последовательности, опубликованный в начале 2001 года [4], был далек от совершенства. В нём отсутствовало приблизительно 30% последовательности генома в целом, из них около 10% последовательности так называемого эухроматина — богатых генами и активно экспрессирующихся участков хромосом. Согласно последним подсчётам, эухроматин составляет примерно 93,5% от всего генома [7]. Оставшиеся же 6,5% приходятся на гетерохроматин — эти участки хромосом бедны генами и содержат большое количество повторов, которые представляют серьезные трудности для ученых, пытающихся прочесть их последовательность [8]. Более того, считается, что ДНК в гетерохроматине находится в неактивном состоянии и не экспрессируется. (Этим можно объяснить такое «невнимание» ученых к оставшимся «малым» процентам человеческого генома.) Но даже имевшиеся на 2001 год «черновые» варианты эухроматиновых последовательностей содержали большое количество разрывов, ошибок и неверно соединенных и ориентированных фрагментов. Нисколько не умаляя значения для науки и ее приложений появление этого «черновика», стоит однако отметить, что использование этой предварительной информации в крупномасштабных экспериментах по анализу генома в целом (например, при исследовании эволюции генов или общей организации генома) выявило множество неточностей и артефактов. Поэтому дальнейшая и не менее кропотливая работа, «последние вершки», была абсолютно необходима.

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в Сэнгеровском институте, заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Таким образом, изначальный план проекта был значительно перевыполнен. Помогло ли это нам в понимании того, как устроен и работает наш геном? Безусловно. Авторы статьи в Nature, в которой был опубликован «окончательный» (на 2004 год) вариант генома [7], провели с его использованием несколько анализов, которые были бы абсолютно бессмысленны, имей они на руках только «черновую» последовательность. Оказалось, что более тысячи генов «родились» совсем недавно (по эволюционным меркам, конечно) — в процессе удвоения исходного гена и последующего независимого развития дочернего гена и гена-родителя. А чуть меньше сорока генов недавно «умерли», накопив мутации, сделавшие их совершенно неактивными. Другая статья, вышедшая в том же номере журнала Nature, прямо указывает на недостатки метода, использованного учеными из Celera [9]. Следствием этих недостатков стали пропуски многочисленных повторов в прочитанных последовательностях ДНК и, как результат, недооценённая длина и сложность всего генома. Чтобы не повторять подобных ошибок в будущем, авторы статьи предложили использовать гибридную стратегию — комбинацию высокоэффективного подхода, использовавшегося учеными из Celera, и сравнительно медленного и трудоемкого, но и более надежного метода, применявшегося исследователями из IHGSC.

Куда дальше будет направлено беспрецедентное исследование «Геном человека»? Кое-что об этом можно сказать уже сейчас. Основанный в сентябре 2003 года международный консорциум ENCODE (ENCyclopaedia Of DNA Elements) поставил своей целью обнаружение и изучение «управляющих элементов» (последовательностей) в геноме человека. Действительно, ведь 3 млрд. пар оснований (а именно такова длина генома человека) содержат всего лишь 22 тыс. генов, разбросанных в этом океане ДНК непонятным для нас образом. Что управляет их экспрессией? Зачем нам такой избыток ДНК? Действительно ли он является балластом, или же все-таки проявляет себя, обладая какими-то неизвестными функциями [10]?

Для начала, в качестве пилотного проекта, ученые из ENCODE «пристально вгляделись» в последовательность, составляющую 1% от генома человека (30 млн. пар оснований), используя новейшее оборудование для исследований в молекулярной биологии. Результаты были опубликованы в апреле нынешнего года в Nature [11]. Оказалось, что бóльшая часть генома человека (в том числе участки, считавшиеся ранее «молчащими») служит матрицей для производства различных РНК, многие из которых не являются информационными, поскольку не кодируют белков. Многие из этих «некодирующих» РНК перекрываются с «классическими» генами (участками ДНК, кодирующими белки). Неожиданным результатом было и то, как регуляторные участки ДНК были расположены относительно генов, экспрессией которых они управляли. Последовательности многих из этих участков мало изменялись в процессе эволюции, в то время как другие участки, считавшиеся важными для управления клеткой, мутировали и изменялись в процессе эволюции с неожиданно высокой скоростью [10]. Все эти находки поставили большое количество новых вопросов, ответы на которые можно получить лишь в дальнейших исследованиях.

Другая задача, решение которой станет делом недалекого будущего, — определение последовательности оставшихся «малых» процентов генома, составляющих гетерохроматин, т. е. бедных генами и богатых повторами участков ДНК, необходимых для удвоения хромосом в процессе деления клетки. Наличие повторов делает задачу расшифровки этих последовательностей неразрешимой для существующих подходов, и, следовательно, требует изобретения новых методов. Поэтому не удивляйтесь, когда году в 2010 выйдет очередная статья, объявляющая об «окончании» расшифровки генома человека — в ней будет рассказано о том, как был «взломан» гетерохроматин.

Конечно, сейчас в нашем распоряжении имеется лишь некий «усредненный» вариант человеческого генома. Образно говоря — мы сегодня имеем лишь самое общее описание конструкции автомобиля: мотор, ходовая часть, колёса, руль, сиденья, краска, обивка, бензин с маслом и т. д. Ближайшее рассмотрение полученного результата свидетельствует о том, что впереди — годы работ по уточнению наших знаний по каждому конкретному геному. Программа «Геном человека» не прекратила свое существование, она лишь меняет ориентацию: от структурной геномики осуществляется переход к геномике функциональной, предназначенной установить, как управляются и работают гены. Более того, все люди на уровне генов отличаются так же, как одни и те же модели автомобилей отличаются различными вариантами исполнения одних и тех же агрегатов. Не только отдельные основания в последовательностях генов двух разных людей могут отличаться, но и количество копий крупных фрагментов ДНК, порой включающих в себя несколько генов, может сильно варьировать. А это означает, что на передний план выходят работы по детальному сравнению геномов, скажем, представителей различных человеческих популяций, этнических групп, и даже здоровых и больных людей. Современные технологии позволяют быстро и точно проводить такие сравнительные анализы, а ведь еще лет десять назад об этом никто и не мечтал. Изучением структурных вариаций человеческого генома занимается очередное международное научное объединение. В США и Европе значительные средства выделяются на финансирование биоинформатики — молодой науки, возникшей на стыке информатики, математики и биологии, без которой никак не разобраться в безграничном океане информации, накопленном в современной биологии. Биоинформационные методы помогут нам ответить на многие интереснейшие вопросы — «как происходила эволюция человека?», «какие гены определяют те или иные особенности человеческого организма?», «какие гены ответственны за предрасположенность к болезням?» Знаете, как говорят англичане: “This is the end of the beginning” — «Это конец начала». Вот именно эта фраза точно отражает нынешнюю ситуацию [12]. Начинается самое главное и — я совершенно уверен — самое интересное: накопление результатов, их сравнение и дальнейший анализ.

«…Сегодня мы выпускаем в свет первое издание „Книги жизни“ с нашими инструкциями, — сказал в эфире телеканала «Россия» Фрэнсис Коллинз. — Мы будем обращаться к нему десятки, сотни лет. И уже скоро люди зададутся вопросом, как они могли обходиться без этой информации».

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

«…Надежды же на то, что новая информация о функциях генома будет полностью открытой, чисто символические. Можно прогнозировать, что возникнут (на базе уже имеющихся) гигантские центры, которые смогут все данные соединить в одно связное целое, некую электронную версию Человека и реализовывать её практически — в гены, белки, клетки, ткани, органы и что угодно ещё. Но во что? Угодное кому? Для чего? В процессе работ по программе „геном человека“ стремительно совершенствовались методы и аппаратура для определения первичной последовательности ДНК. В крупнейших центрах это превратилось в некое подобие заводской деятельности. Но даже на уровне лабораторных индивидуальных приборов (вернее их комплексов) уже создано столь совершенное оборудование, что оно способно определить за три месяца такую по объему последовательность ДНК, которая равна всему геному человека. Не удивительно, что возникла (и тут же начала стремительно реализоваться) идея определения геномов индивидуальных людей. Безусловно, это очень интересно — сравнить отличия разных индивидуумов на уровне их первоосновы. Польза от такого сравнения тоже несомненная. Можно будет установить, у кого имеются какие нарушения в геноме, прогнозировать их последствия и устранить то, что может привести к болезням. Здоровье будет гарантированным, да и жизнь продлится весьма существенно. Это с одной стороны. С другой же стороны всё совсем не очевидно. Получить и проанализировать всю наследственность индивидуума означает получение полного, исчерпывающего биологического досье на него. Оно, при желании того, кто его знает, позволит столь же исчерпывающе делать с человеком всё что угодно. По уже известной цепочке: клетка — молекулярная машина; человек состоит из клеток; клетка во всех своих проявлениях и во всём диапазоне возможных ответов, записана в геноме; с геномом можно ограниченно уже и сегодня манипулировать, а в обозримом будущем вообще манипулировать практически как угодно…»

Однако, наверное, пугаться таких мрачных прогнозов еще рано (хотя знать о них, безусловно, нужно). Для их осуществления надо полностью перестраивать многие социальные и культурные традиции. Очень хорошо по этому поводу сказал в интервью доктор биологических наук Михаил Гельфанд, и. о. заместителя директора Института проблем передачи информации РАН: «…если у вас есть, предположим, один из пяти генов, предопределяющих развитие шизофрении, то что может случиться, если эта информация — ваш геном — попала в руки вашего потенциального работодателя, который ничего в геномике не понимает! (и как следствие — вас на работу могут не принять, посчитав это рискованным; и это не смотря на то, что шизофрении у вас нет и не будет — прим. автора.) Другой аспект: с появлением индивидуализированной медицины, основанной на геномике, полностью изменится страховая медицина. Ведь одно дело — предусматривать риски неизвестные, а другое дело — совершенно определенные. Если честно, то все западное общество в целом, не только российское, к геномной революции сейчас не готово…» [13].

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном — не просто прочитать, этого далеко не достаточно, — нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки — зависит от нас.

  1. Киселёв Л. (2001). Новая биология началась в феврале 2001 года. «Наука и Жизнь»;
  2. Киселёв Л. (2002). Вторая жизнь генома: от структуры к функции. «Знание–Сила». 7;
  3. Смыслы «жизни»;
  4. Eric S. Lander, Lauren M. Linton, Bruce Birren, Chad Nusbaum, Michael C. Zody, et. al.. (2001). Initial sequencing and analysis of the human genome. Nature. 409, 860-921;
  5. J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural, et. al.. (2001). The Sequence of the Human Genome. Science. 291, 1304-1351;
  6. Геном Нобелевского лауреата Джеймса Уотсона скоро будет расшифрован;
  7. International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature. 431, 931-945;
  8. Геном человека: полезная книга, или глянцевый журнал?;
  9. Xinwei She, Zhaoshi Jiang, Royden A. Clark, Ge Liu, Ze Cheng, et. al.. (2004). Shotgun sequence assembly and recent segmental duplications within the human genome. Nature. 431, 927-930;
  10. «Мусорная» ДНК управляет эволюцией млекопитающих?;
  11. Ewan Birney, The ENCODE Project Consortium, John A. Stamatoyannopoulos, Anindya Dutta, Roderic Guigó, et. al.. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447, 799-816;
  12. Lincoln D. Stein. (2004). Human genome: End of the beginning. Nature. 431, 915-916;
  13. Гельфанд М. (2007). Постгеномная эра. «Коммерческая биотехнология».

biomolecula.ru

Сколько у нас генов?

Статья на конкурс «био/мол/текст»: Это интересный вопрос, ответ на который должен был дать проект «Геном человека», завершившийся в 2003 году. После того как ученые получили основную информацию о геноме человека, они попытались определить число генов, но эта задача оказалось не такой простой. Цель настоящей статьи — суммировать и проанализировать научные данные по составлению каталога генов у человека.

Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2018.


Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий выступил медико-генетический центр Genotek.


«Книжный» спонсор конкурса — «Альпина нон-фикшн»

Как же мало известно о генах! Первый раз я остро ощутила это, находясь на практике в лаборатории медицинской генетики Харбинского медицинского университета. Исследовательская группа, где я проходила стажировку, занималась изучением онкогена Sei-1, который индуцирует образование двухминутных хромосом (DM), что способствует развитию онкогенеза. Однако механизм образования онкогена Sei-1 остается неизвестным до сих пор. А ведь различные мутации генов являются причиной возникновения и других опасных заболеваний человека, помимо рака. Итак, в данной статье мы изложим некоторые соображения о том, почему мы все еще многое не знаем о генах, а также сформулируем наше мнение о том, сколько генов у человека.

В 1977 году Фредерик Сэнгер впервые разработал метод секвенирования ДНК [1], основанный на терминации ДНК-полимеразной реакции с помощью дидезоксинуклеотидов, за что в 1980 году был удостоен Нобелевской премии в области химии. В этом же году Нобелевскую премию получили Максам и Гилберт, которые предложили метод секвенирования ДНК путем химической деградации. В 1985 году была выявлена первая полная последовательность ДНК бактерии (Haemophilus influenzae), в 1996 году получен первый геном эукариотической клетки (дрожжи Saccharomyces ceravisiae), а в 1998 году расшифрован геном дождевого червя (Caenorhabditis elegans). Завершение в 2003 году проекта «Геном человека» привело к публикации полной последовательности человеческого генома. Но «полной» ее можно назвать весьма условно, учитывая, что около 8% не секвенировано и по сей день [2].

Проект «Геном человека» и полный список генов

Выявление полного списка генов необходимо для выяснения молекулярных механизмов возникновения и развития рака, шизофрении [3], деменции, а также многих других заболеваний человека. Секвенирование ДНК, выделенной из тканей больных, позволяет выявлять такие мутации, как нуклеотидные замены, делеции и вставки, ответственные за возникновение этих заболеваний.

Рисунок 1. Арт-проект на выставке «Геном — расшифровка кода жизни» в Национальном музее естественной истории в Вашингтоне

Собственно, ради этого и затевался проект «Геном человека» (Human genome project, HGP), который продолжался с 1990 по 2003 год. Его основной задачей было определение нуклеотидной последовательности ДНК человека и локализации 100 000 человеческих генов (как тогда полагали) [4]. Параллельно с этим планировалось изучить ДНК набора модельных организмов, чтобы получить сравнительную информацию, необходимую для понимания функционирования генома человека. Предполагалось, что информация, полученная в результате HGP, станет настольной книгой для биомедицинской науки в XXI веке [5]. Целями данных исследований являлось получение информации о причинах ряда болезней [6] и, в конечном итоге, разработка способов лечения более чем 4000 генетических заболеваний, которые затрагивают человечество, включая многофакторные, в которых генетическая предрасположенность играет важную роль. Считалось, что результаты секвенирования генома позволят определить локализацию каждого гена и их общее количество. Однако последовавшие за этим события доказали обратное: сегодня существует несколько баз данных генов, которые существенно отличаются друг от друга. Причем число белок-кодирующих генов совпадает, а число генов других типов расходится.

Проект «Протеом человека»

В 2010 году по инициативе Организации по изучению протеома человека (Human proteome organization, HUPO) был начат проект «Протеом человека» (HPP), целью которого является создание полного списка белков вида Homo sapiens [7]. Для этого, во-первых, предполагается идентифицировать и охарактеризовать, по крайней мере, по одному белковому продукту белок-кодирующих генов, их однонуклеотидные полиморфизмы и варианты сплайсинга, а также виды посттрансляционной модификации белков [8]. Во-вторых, данные протеомики, полученные в результате реализации HPP, способствуют, в дополнение к геномным данным, решению различных биомедицинских задач и созданию новых аннотированных баз знаний, таких как neXtProt [9].

В настоящее время neXtProt содержит информацию о 17 487 белках, существование которых экспериментально подтверждено, 1728 белках, подтвержденных на уровне транскриптов, 515-и, определенных на основании гомологии, 76-и предсказанных и 571-м неизвестной природы. Особый интерес вызывают белки, существование которых экспериментально не доказано, хотя данные о том, что они кодируются геномом, существуют. Это так называемые «потерянные» белки, которые составляют примерно 18% всех кодируемых белков. Для выявления и характеристики таких белков создан ресурс MissingProteinPedia [7].

«Протеом человека» является продолжением проекта «Геном человека». Предполагается, что благодаря проекту по изучению протеома мы узнаем точное количество белок-кодирующих генов, что впоследствии позволит понять, сколько всего генов у человека.

Немного о РНК

Проект «Геном человека» показал, что молекулы РНК также важны для жизни, как и ДНК. Внутри клеток существует множество РНК (рис. 2). Изначально РНК подразделяются на некодирующие РНК (нкРНК), которые не транслируются в белки, и кодирующие РНК (мРНК), служащие матрицей для синтеза полипептидных цепей белка. Некодирующие РНК имеют более сложную классификацию. Они бывают инфраструктурными и регуляторными. Инфраструктурные РНК представлены рибосомными РНК (рРНК) и транспортными РНК (тРНК). Молекулы рРНК синтезируются в ядрышке и составляют основу рибосомы, а также кодируют белки субъединиц рибосомы. После того, как рРНК полностью собраны, они переходят в цитоплазму, где в качестве ключевых регуляторов трансляции, участвуют в чтении кода мРНК. Последовательность из трех азотистых оснований в мРНК указывает на включение определенной аминокислоты в последовательность белка. Молекулы тРНК, приносят указанные аминокислоты на рибосомы, где синтезируется белок.

Рисунок 2. Виды РНК

Регуляторные нкРНК очень широко представлены в организме, классифицируются в зависимости от размера и выполняют ряд важных функций (табл. 1).

Таблица 1. Некодирующие регуляторные РНК
НазваниеОбозначениеДлинаФункции
Длинные некодирующие РНК днкРНК, lncRNA 200 нуклеотидов 1. Регулируют избирательное метилирование ДНК, направляя ДНК-метилтрансферазу
2. Руководят избирательной посадкой репрессорных комплексов polycomb
Малые РНК Малые ядерные РНК мяРНК, snRNA 150 нуклеотидов 1. Участвуют в сплайсинге
2. Регулируют активность факторов транскрипции
3. Поддерживают целостность теломер [13]
Малые ядрышковые РНК мякРНК, snoRNA 60–300 нуклеотидов 1. Участвуют в химической модификации рРНК, тРНК и мяРНК
2. Возможно, участвуют в стабилизации структуры рРНК и защите от действия гидролаз
Малые интерферирующие РНК миРНК, siRNA 21–22 нуклеотидов 1. Осуществляют антивирусную иммунную защиту
2. Подавляют активность собственных генов
Микро-РНК мкРНК, miRNA 18–25 нуклеотидов Подавляют трансляцию путем РНК-интерференции
Антисмысловые РНК [14] asRNA 1. Короткие: менее 200 нуклеотидов
2. Длинные: более 200 нуклеотидов
Блокируют трансляцию, образуя гибриды с мРНК
РНК, связанные с белками Piwi piRNA, piwiRNA 26–32 нуклеотидов Их также называют «стражами генома», они подавляют активность мобильных генетических элементов во время эмбриогенеза

Проблема терминологии

Прежде чем ответить на вопрос: «Сколько у нас генов?», нужно понять, что же такое ген?

Основное внимание HGP было направлено на белок-кодирующие гены [15]. Однако, как было указано в первоначальном докладе HGP в 2001 году, «тысячи генов человека продуцируют некодирующие РНК (нкРНК), являющиеся их конечным продуктом», хотя на тот момент было известно около 706 генов нкРНК [2]. В своей недавней статье, опубликованной в журнале BMC Biology Стивен Зальцберг (Steven L. Salzberg) дает следующее определение гена [16]:

Ген
любой участок хромосомной ДНК, который транскрибируется в функциональную молекулу РНК или сначала транскрибируется в РНК, а затем транслируется в функциональный белок.

Это определение включает как гены некодирующих РНК, так и белок-кодирующие гены, и позволяет определять все варианты альтернативного сплайсинга в одном локусе как варианты одного и того же гена. Это позволяет исключить псевдогены – нефункциональные остатки структурных генов, утратившие способность кодировать белок.

Результаты двух первых исследований свидетельствовали о наличии у человека 31 000 [2] и 26 588 белок-кодирующих генов [17], а в 2004 появилась полная последовательность генома человека [4], и авторы подсчитали, что полный каталог насчитывает 24 000 белок-кодирующих генов. Каталог человеческих генов Ensembl включает 22 287 белок-кодирующих генов и 34 214 транскриптов [18].

Секвенирование нового поколения (NGS)

Появление высокопроизводительных методов параллельного секвенирования (в ходе такого секвенирования миллионы фрагментов ДНК из одного образца секвенируются одновременно) или секвенирования нового (следующего) поколения (next-generation sequencing, NGS) [1] позволило значительно ускорить поиск функциональных участков генома [4]. Биотехнологические компании разработали и коммерциализировали различные платформы для NG-секвенирования, позволяющие секвенировать от 1 млн до десятков млрд коротких последовательностей (ридов, reads) длиной 50–600 нуклеотидов каждая. К наиболее популярным платформам относятся такие, как Illumina и IonTorrent, использующие амплификацию ДНК с помощью ПЦР [19], а также платформы одномолекулярного секвенирования, такие как Helicos Biosciences HeliScope, Pacific Biosciences SMRT (single molecule real-time sequencing), и нанопорового секвенирования Oxford Nanopore, осуществляющие секвенирование в реальном времени и позволяющие прочитывать значительно более длинные риды — до 10–60 тыс. нуклеотидов. Кроме того, изобретение секвенирования РНК (RNA-seq) в 2008 году, которое создавалось для количественного определения экспрессии генов, также способствовало обнаружению транскрибируемых последовательностей, как кодирующих, так и некодирующих РНК [20].

Благодаря NGS, базы данных днкРНК и других генов РНК (таких как микро-РНК) резко выросли за десятилетие, и текущие каталоги генов человека теперь содержат больше генов, кодирующих РНК, чем белки (табл. 2).

Таблица 2. Количество разных типов генов в следующих базах данных: Gencode, Ensembl, RefSeq, CHESS
Типы геновGencodeEnsemblRefSeqCHESS
Белок-кодирующие гены 19 901 20 376 20 345 21 306
Гены длинных некодирующих РНК 15 779 14 720 17 712 18 484
Антисмысловые РНК 5501 28 2694
Другие некодирующие РНК 2213 2222 13 899 4347
Псевдогены 14 723 1740 15 952
Общее число транскриптов 203 835 203 903 154 484 323 827

Рисунок 3. Последовательность ДНК, получаемая после секвенирования человеческого генома

В ходе секвенирования РНК обнаружилось, что альтернативный сплайсинг, альтернативное инициирование транскрипции и альтернативное прерывание транскрипции проиcходят гораздо чаще, чем полагали, затрагивая до 95% человеческих генов. Следовательно, даже если известно местоположение всех генов, сначала нужно выявить все изоформы этих генов, а также определить, выполняют ли эти изоформы какие-либо функции или они просто представляют собой ошибки сплайсинга.

Базы данных генов человека

Задача по составлению каталога всех генов по-прежнему не решена. Проблема заключается в том, что за последние 15 лет только две исследовательские группы составили список доминантных генов: RefSeq, которая поддерживается Национальным центром биотехнологической информации (NCBI) при Национальных институтах здоровья (NIH), и Ensembl/Gencode, которая поддерживается Европейской молекулярно-биологической лабораторией (EMBL). Однако, несмотря на большой прогресс, сейчас в каталогах различается количество белок-колирующих генов, генов длинных некодирующих РНК, псевдогенов, а также варьирует количество антисмысловых РНК и других некодирующих РНК (табл. 2). Каталоги еще дорабатываются: например, в прошлом году сотни генов, кодирующих белок, были добавлены или удалены из списка Gencode. Эти разногласия объясняют проблему создания полного каталога человеческих генов.

В 2017 году была создана новая база данных генов человека — CHESS. Примечательно, что она включает все белок-кодирующие гены как Gencode, так и RefSeq, так что пользователям CHESS не нужно решать, какую базу данных они предпочитают. Бóльшее количество генов может вызывать больше ошибок, но создатели считают, что бóльший набор окажется полезным при исследовании болезней человека, которые еще не отнесены к генетическим. Набор генов CHESS в настоящее время в версии 2.0 еще не окончательный, и, безусловно, создатели работают над его усовершенствованием.

Таким образом, все еще неизвестно, сколько всего генов у человека. Существует ряд проблем, затрудняющих эту задачу. Например, многие гены (особенно, гены днкРНК), видимо, имеют высокую тканеспецифичность. Из этого следует, что пока ученые подробно не исследуют все типы клеток человека, они не могут быть уверены, что обнаружили все человеческие гены и транскрипты. Безусловно, сегодня знания о человеческих генах стали значительно обширнее, чем в начале проекта «Геном человека», а технологии совершеннее. Это дает надежду на то, что в скором времени мы узнаем точный ответ на поставленный вопрос.

  1. 12 методов в картинках: секвенирование нуклеиновых кислот;
  2. Eric S. Lander, Lauren M. Linton, Bruce Birren, Chad Nusbaum, Michael C. Zody, et. al.. (2001). Initial sequencing and analysis of the human genome. Nature. 409, 860-921;
  3. Власть колец: всемогущие кольцевые РНК;
  4. International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature. 431, 931-945;
  5. Mohammad Ilyas. (2017). Next-Generation Sequencing in Diagnostic Pathology. Pathobiology. 84, 292-305;
  6. Геном человека: полезная книга, или глянцевый журнал?;
  7. Mark S. Baker, Seong Beom Ahn, Abidali Mohamedali, Mohammad T. Islam, David Cantor, et. al.. (2017). Accelerating the search for the missing proteins in the human proteome. Nat Comms. 8, 14271;
  8. SUMO: японская борьба или уникальная посттрансляционная модификация?;
  9. Pascale Gaudet, Pierre-André Michel, Monique Zahn-Zabal, Aurore Britan, Isabelle Cusin, et. al.. (2017). The neXtProt knowledgebase on human proteins: 2017 update. Nucleic Acids Res. 45, D177-D182;
  10. Обо всех РНК на свете, больших и малых;
  11. Кодирующие некодирующие РНК;
  12. Власть колец: всемогущие кольцевые РНК;
  13. Цинковые пальцы смерти;
  14. Есть ли смысл в антисенсах?;
  15. Геном человека: как это было и как это будет;
  16. Steven L. Salzberg. (2018). Open questions: How many genes do we have?. BMC Biol. 16;
  17. J. C. Venter, H. O. Smith, M. D. Adams. (2015). The Sequence of the Human Genome. Clinical Chemistry. 61, 1207-1208;
  18. Eric T. Wang, Rickard Sandberg, Shujun Luo, Irina Khrebtukova, Lu Zhang, et. al.. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature. 456, 470-476;
  19. 12 методов в картинках: полимеразная цепная реакция;
  20. Hassaan Mehboob Awan, Abdullah Shah, Farooq Rashid, Ge Shan. (2017). Primate-specific Long Non-coding RNAs and MicroRNAs. Genomics, Proteomics & Bioinformatics. 15, 187-195.

biomolecula.ru

Разное

Оставить комментарий

avatar
  Подписаться  
Уведомление о